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TRANSIENT TRANSPORT IN NANOSTRUCTURE
DEVICES VIA THE QUANTUM LIOUVILLE
EQUATION IN THE COORDINATE REPRESENTATION

Abstract

This document summarizes work performed under US Navy, Office of Naval Research
Contract: N00014-95-C-0024 to examine transient transport in quantum structures via the quan-
tum Liouville equation in the coordinate representation. For comparison transient results via the
Wigner distribution are included. The issue of dissipation in nanostructures was also initiated in
this study. A summary of the dissipation results is included in a reprint.




1. Introduction

In the past decade there have been demonstrations that band structure engineered devices
with nanoscale dimensions have the potential of providing a dramatic shift in semiconductor tech-
nology. One significant illustration of this is the development of multiple value logic and memory
circuits based on utilization of the negative differential resistance properties of either isolated
resonant tunneling structures or embedded RTDs (as in the case of resonant tunneling bipolar tran-
sistors). Another is the demonstration of the RTD as a high frequency relaxation oscillator, sim-
plifying the prospect of developing high frequency clocks. But, the operation of either logic or
memory devices requires knowledge only of the static properties of RTDs, as does the operation of
the RTD as a relaxation oscillator.

But as device size shrinks, the active region of the device approaches the size of the elec-
tron wave-packet, transit times approach coherence times, and the device operation cannot reliably
be treated within a steady state picture. Rather transients are required for a basic understanding of
the device operating principles. This study under US Navy, Office of Naval Research Contract:
N00014-95-C-0024 was concerned with transient quantum transport. The vehicle for examining
transient issues was the density matrix in the coordinate representation. More recent studies have
focused on transient transport via the Wigner distribution function.

Transient transport via the quantum Liouville equation in the coordinate representation was
begun under this contract. A comparison to the Wigner studies is given below. Unless otherwise
noted all transient calculations are coupled to Poisson's equation.

In addition a study of dissipation was initiated. This is summarized in a reprint included
with this report.

2. Transient Behavior with the Time Dependent Liouville Equation in the Coordinate
Representation (Restricted to the Single Time Representation)

All of the time dependent simulations were in the single time representation. Two time
transients were formulated but not implemented. For the single time density operator the quantum
Liouville equation is:

(1) ih% = [H(t), Pop (t):l +[H(t)dimpmion s Pop (t)]

Here: p,, (¢)1s the density operator and H () jpaio 18 that portion of the Hamiltonian describing
dissipation.

Under this study the quantum Liouville equation was studied within the coordinate repre-
sentation. The full coordinate representation is a six dimensional space plus time, where the den-
sity matrix is expressed as: p (x, ¥,2;x,9',2 ';t) . We dealt only with the restricted situation where

the carriers are free in two directions, y and z. This is equivalent in the Wigner picture to dealing
with one-dimensional transport and ignoring any non-parabolic contributions from transverse mo-
mentum states. »

Dissipation was introduced through quasi-Fermi levels as shown below in equation (2):



., dp(x,x',1)
h———— " =
l dt
® nw(ad* 9’
(a_xz Toxt ]p(x, 20+ [(V0) =V )= (Ee ()= Er(x)) ] ps')
As we are only interested in differences in potential energy, we are only interested in differences in
the quasi-Fermi levels. Here:

3)  E(L)-E,(0)=- jOdemv(x)r(x)

2m

In the above the velocity v(x), is obtained as the ratio of the position dependent particle current

density and the carrier density. T'(x) is a position dependent scattering rate. The particle current

density is given by the diagonal component of the current-density-operator in the coordinate repre-
sentation:

, h (o d ,
@ Jxxhe) 2mi[o7x ax,JP(x,x,t)@)

The quasi-Fermi energy was computed subject to the constraint that the kinetic energy of
entering and exiting carriers are equal. (The quasi-Fermi level approach to dissipation was exam-
ined in detail in a variety of circumstances. In particular, under conditions appropriate to classical
transport, all of the standard results were obtained. In particular, Ohm’s law was retrieved. Under
conditions appropriate to quantum corrections this dissipation model appears to provide reasonable
current-voltage characteristics.)

In all transient calculations, those via the density matrix in the coordinate representation
and those via the Wigner representation, total current included both displacement and particle
conduction contributions; the former proportional to the time derivative of the local electric field.
Thus accurate solutions to Poisson’s equation were needed.

The boundary conditions on equation (2) incorporated the density matrix equivalent of a
displaced Fermi-Dirac distribution. As discussed in the first reprint, the upstream boundary condi-

tion is p(x,x")expli(x—x"ymJ/ (poh)] where p(x,x") is the zero current quantum distribution
function on the boundary, p, is the density on the boundary, and J is the current density at the
boundary. This condition is also imposed for the time dependent studies. This condition is
equivalent to imposing displaced Fermi-Dirac conditions. In the Wigner function calculations, dis-
placed Fermi conditions were not imposed. Rather the normal spatial derivative was set to zero.

In both the density matrix and Wigner function calculations, the boundary conditions chosen were
designed to provide flat band conditions.

3. Results with the Density Matrix in the Coordinate Representation

For the problems discussed below with the potential energy at the emitter set to zero, the
system is brought to steady state for a given collector potential energy. A step change to a new

constant value is introduced for V (L), and the resulting time dependent behavior is computed at
fixed increments in time. All calculations assumed Fermi statistics, parameters appropriate to

GaAs, except for the barriers, and a constant effective mass. For each study a steady state was
reached at a value of 100 meV. A step change in voltage to 150 meV was then applied.




Several structures were studied, all 120nm in length. This device length is too small for
the requirements of flat band at the boundaries to be met. The choice was based on achieving
small time steps and these calculations did indicate a capability to perform transient studies. The
transient studies included:

(1) An N'N'N" triple barrier 200 meV structure;
(2) An N"N'N", 300 meV double barrier structure, and
3) A uniform N-type 300 meV double barrier structure.

The background doping and structure of the double and triple barrier results are shown in
figure 1. The results for the triple barrier structure are discussed first.
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Figure 1: Background doping distribution and the double and triple barrier structures for
the transient calculations with the density matrix in the coordinate representation.

The triple barrier structure: At 100 meV the steady state current was
1.477x10° amps/m*. Increasing the bias to 150 meV yielded an increased steady state value of

current equal to 2.657x10” amps/m*. Due to time limitations transitions to lower current with

increased bias were not obtained during this transient study. They awaited the more recent Wigner
calculation, which is discussed below. The time dependent space charge distribution following the
step from 100 meV to 150 meV was followed through a time of 420 fs. The time step was 70fs,
and the transient current at the end of each time increment is shown in figure 2. While we did not



carry this calculation to very long times, the initial structure in the calculation shows a period of
near 200 fs. This number is significant, as we see very similar structure in transients associated
with double barrier structures obtained with the Wigner formulation.

Examining the space charge distribution following the step change in voltage, we found for
the cladding regions surrounding the barriers, little difference in density at the different bias levels.
Since there are changes in voltage in the surrounding regions, the dominant time dependent behav-
ior is likely due to displacement current contributions. The situation is different in the interior.

Figure 3 displays, for the central 20 nm region the initial steady state solution, the final
steady state solution, and for two early time intervals. Several points are noted.

(D
)
3)

Current Density (10 ° amps/m?)

The lowest values of charge density occur within the barriers, and there are
three barriers. (This results is expected.)

There is charge accumulation within the two quantum wells. With the greatest
amount in the quantum well closest to the emitter contact.

The maximum change in the charge distribution within the two quantum
wells appears to have occurred within the first 70 fs time step. 1t is within the
quantum wells that the peak carrier density occurs. The situation within the bar-
riers is different. Here there is considerable transient behavior with the density
not quite reaching its steady state value. The results suggest distributive behav-
ior during the initial transient. Distributive behavior means that within the bar-
riers where there is considerable temporal variation in the charge distribution,
we may be seeing a transient inductive contribution to the potential drop in the
device. In the quantum wells we may be seeing a capacitive contribution.

2.90
l I

Steady. State Currént is:
2.80 12,657x.10%amps/m2; .
2.70 )\
2.60
2.50
2.40
2.30

0 70 140 210 280 350 420
Time (fs)

Figure 2: The current transient for the triple barrier structure.
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The last point is a new and unexpected result, and bears careful study in the Wigner formu-
lation. From a device operational point of view this means that most of the longer time current
transients within the quantum well arise from displacement current contributions. It also indicates
that there is considerable physics in the sub 70 fs time scale.

Transient Density Following Sudden Bias Change
1.0e+23
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£
~ 1.0e+22
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Figure 3: The transient density for the triple barrier structure following a sudden
change in bias.

The Double Barrier Structure: The situation for the N'N'N™ double barrier structure is
similar. Here at a bias of 100 meV, the steady state current is 6.102 x 108 amps/mz, at 150 meV
the current is 1.047 x 10° amps/m®. The transient density distribution shows considerably more
structure in the cladding regions, than for the triple barrier structure and suggests that conduction
current contributions as well as displacement current contributions are significant. The situation in
the interior is displayed in figure 4 and is very similar to that of the triple barrier structure. Appli-
cation of the sudden change in bias results in an increase in charge everywhere within the struc-
ture. But here the transient behavior is more dramatic than that arising in the triple barrier struc-



ture. First we see similar behavior in the quantum well, where the carrier density appears to ap-
proach its steady state value in a time less than 70fs. The transient behavior associated with the
barriers is much different. As in the case of the triple barrier structure where most of the time de-
pendent variation in charge occurred within the barriers, here the time variation in charge density

in the barriers is extreme. The consequence of the barrier charge distribution needs to be exam-
ined.

Transient Density FollowinQ Sudden Bias Change
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Figure 4: The transient density for the double barrier structure following a sudden
change in bias.

The Uniformly Doped Double Barrier Structure: The situation for the double barrier
structure embedded in a uniformly doped 10*/m? region also shows time dependent behavior, but
the initial and final state distributions of charge are not significantly different, and the steady state
distribution of charge appears to be reached in the early time stages. It appears that dielectric re-
laxation may be playing a significant role here.

4. Transients Via the Wigner Distribution-A Comparison




The detailed charge distribution associated with barriers is far richer than we would expect
from simple time independent arguments. More recent work with a Wigner transient algorithm
developed at SRA indicates some unusual features; unusual in the sense that they are unlikely to
predicted from a simple analysis of the initial and final states. We show these results below.

The calculations were for a resonant tunneling diode with 250 meV barriers, 5 nm wide,
and with a 5 nm wide separation. The current voltage characteristics demonstrated a current drop
back with no dc hysteresis. The device was subjected to a transient voltage pulse and allowed to
settle into equilibrium. The voltage pulse started from approximately 230 meV, a value below the
threshold voltage for negative differential conductivity, to approximately 310 meV. The time de-
pendence of the charge distribution is shown in figure 5. Figure 5 is a display of the one-
dimensional distribution of charge at different instants of time. The structure is 200 nm long.

‘ We know from the static calculations that the distribution of charge prior to switching to
the low current state consists of considerable charge accumulation in the quantum well. After the
transition to the low current state there is significant loss of charge within the quantum well, with a
large increase in charge on the emitter side of the barrier. The time dependent behavior displayed
in figure 5 is consistent with this result. But there is more. It appears that the transition to the
high/low charge distribution within the quantum well occurs early in the transient. If this is the
case what is the origin on the high frequency current transients that commonly accompany the
switching transient? (We note that we have also seen these transients in the density matrix simula-
tions.) A careful look at the simulations indicates that the charge distribution on the emitter side
of the barrier is undergoing considerable oscillation, more than that within the quantum well.
While the distribution on the emitter side of the barriers affects the charge distribution within the
quantum well, the time dependence appears to be dominated by the charge on the emitter side of
the barrier.

The time dependence of the charge on the emitter side of the barrier is somewhat obscured
in figure 5. In figure 6, we have taken out the transient further (in time), but have broken up the
plot into two sections: an early and late time transient. There is considerably more quantum well
charge during the initial transient. Note the large charge excursions on the emitter side of the bar-
rier. (The emitter is on the right hand side of both figures.)

The conclusion of the Wigner transients and the density matrix transients is that the
structure of the transient oscillation will also depend upon the design of the regions outside of
the quantum well.
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Figure 6: As in figure 5, with two exceptions. Transient is carried out for a longer period of time, and the display is for
the initial and final sections of the transient.

5. Summary and Publications

The calculations discussed here demonstrate the richness of the transient phenomena.
There is tunneling through a barrier and into the quantum well, coupled to displacement current

12



effects, and contributions arising due to the magnitude of the density within the structure. We
have not attempted to extract a tunneling time from these studies. In actual device studies the tun-
neling times would be dressed by dielectric contributions and the variability of the self-consistent
field. Furthermore, large signal transients would dominate indicating that tunneling times would
depend on the initial and final states of the system. The details of the result will also depend upon
the scattering parameters.

The transient density matrix study was summarized in a paper that is included with this re-
port (Reprint 1).

As indicated in the introduction there was also a new formulation of dissipation. This is
included as Reprint 2.

13



Reprint 1

SELF-CONSISTENT TIME DEPENDENT SOLUTIONS TO THE QUANTUM
LIOUVILLE EQUATION IN THE COORDINATE REPRESENTATION: APPLICATION
TO BARRIER STRUCTURES: Appearing in Hot Carriers in Semiconductors, K. Hess, J. Le-
burton, U. Ravaioli, eds Plenum Press, NY Page 421 (1995).
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SELF-CONSISTENT TIME DEPENDENT SOLUTIONS TO THE QUANTUM
LIOUVILLE EQUATION IN THE COORDINATE REPRESENTATION: APPLICATION
TO BARRIER STRUCTURES"

H. L. Grubin' , T.R. Govindan' ,and D. K. Ferry2

!Scientific Research Associates, Inc.; Glastonbury, Connecticut, USA
2Arizona State University; Tempe, AZ, USA

INTRODUCTION

We report on transient accurate self-consistent solutions of the quantum Liouville equation
in the coordinate representation:

' 2
. adp(x,x',t) =_£

dt 2m| dx* I x?

2° d? , ,
[ ——-———jp(x,x',w+[(V(x)—V<x'>)—(EF(x)—EF ()] p(x.x0)
where E,.(x)and E,(x") represent quasi-Fermi levels subject to the constraint that the kinetic en-

ergy of entering and exiting carriers are equal [Grubin (1995)]. Dissipation is included and cur-
rent, Jro, , contains both displacement and conduction contributions. Under time independent
conditions the conduction current, j, for a scattering rate I satisfies the condition that:

E.(L)-E.(0)=-— jJOL dxmI'(x)/ p(x). The boundary conditions incorporate current via the den-

sity matrix equivalent of a displaced Fermi-Dirac distribution [ Grubin et al. (1993)].

For this discussion, V(x=0)=0, and for a given downstream potential energy V(L), the sys-
tem is brought to steady state. A step change to a new constant value is introduced for V(L), and
the resulting time dependent behavior is computed at fixed increments in time.

THE RESULTS
Three symmetric 120 nm length structures were studied: (i) N'N'N* [N*=10**/m® (30 nm

long), N'=10"%/m’ (30 nm long)], three 200 meV barriers [4 nm barriers, 4 nm wells]; (i) N'N'N*,
two 300 meV barriers [Snm barriers, 6 nm well] and (iii) as (ii) but uniformly doped with N

15




=10**/m’> . We assumed Fermi statistics, parameters appropriate to GaAs, except for the barriers,
and a constant effective mass. While the length of the structure is too small for any real device
studies, the choice achieved small time steps. A step change in voltage to 150 meV from a steady
state of 100 meV, was applied.

The triple barrier structure: At 100 meV the steady state current was 1.477 x 10°
amps/m’. At 150 meV steady state yielded a current value of 2.657 x 10° amps/m”. The time de-
pendent space charge distribution following the voltage change was followed through 420 fs. The
time step was 70fs, and the transient current at the end of each time increment is shown in figure 1.
70 fs after application of the step change in voltage the charge is generally increased everywhere
within the structure. (This is true for the double barrier structure as well.) For the regions sur-
rounding the barriers we find little time variation in density although the cladding region voltage
undergoes changes, suggesting that the dominant time dependent behavior in the cladding region is
due to displacement current contributions. For the barrier region, matters are different; the time
dependent changes in voltage are reduced. At 70 fs after application of the voltage step the charge
within the barriers exceeds that of the lower bias steady state; see figure 2, which displays denstiy,
within the central 20 nm region. At 140 fs there is a decrease in charge within the three barriers
and a corresponding increase in charge between the barriers. These results are consistent with an
interpretation that a fraction of the charge present at 70 fs has tunneled through the barriers at 140

fs. Excess charge in the wells would subsequently tunnel back toward the respective barriers at a
later time, etc., until a steady state is reached.

Transient Current at Specific Time Steps

2.90e+9

'\
2.80e+9

NI
SNENEAAS

el L\ /]
V

Steady State Current = 2.657x10° amps/m?

Current Density (amps/m?)

2.40e+9

2.30e+9

0 70 140 210 280 350 420
Time (femtoseconds)

Figurel. Current transient for the triple barrier structure.




Transient Density Following Sudden Bias Change
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Figure 2. Transient space charge distribution for the triple barrier struture.

The Double Barrier Structures: The situation for the N'N'N" double barrier structure is
similar. Here at a bias of 100 meV, the steady state current is 6.102 x 108 amps/mz, at 150 meV
the current is 1.047 x 10° amps/mz. For the regions surrounding the barriers, the transient den-
sity distribution shows considerably more structure in the cladding regions than for the triple bar-
rier structure and suggests that conduction current contributions as well as displacement current
contributions are significant. For the barrier region, figure 3, charge appears to tunnel to the cen-
ter well, where the peak density exceeds its steady state value. Tunneling out of this region in-
creases the charge in the barrier. This tunneling into and out of the quantum well may be driving
the time dependence of the device.

The situation for the double barrier structure embedded in a uniformly doped 10**/m? re-
gion also shows time dependent behavior, but the initial and final state disributions of charge are
not significantly different, and the steady state distibution of charge appears to be reached in the
early time stages. Dielectric relaxation may be playing a significant role.

17



Transient Density Following Sudden Bias Change
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Figure3. Transient space charge distribution for the double barrier structure.

SUMMARY AND REMARKS

The calculations discussed here demonstrate the richness of the transient phenomena.
There is tunneling through a barrier and into the quantum well, coupled to displacement current
effects, and contributions arising due to the magnitude of the density within the structure. We
have not attempted to extract a tunneling time from these studies; in actual device studies, the tun-
neling times would be dressed by dielectric contributions and the variability of the self consistent
field. In most of the calculations the current reaches its steady state value at approximately 500 fs,
but weak oscillations beyond this are expected. We have not carried this further. The details of
the result will be depend upon the scattering parameters.
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Reprint 2

DISSIPATION AND QUANTUM TRANSPORT SIMULATIONS IN NANOSCALE
DEVICES: Appearing in Superlattices and Microstructures 20, 531 (1996 ).
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Superlattices and Microstructures, Vol. 20, No. 4, 1996 @

Dissipation and quantum transport simulations in nanoscale devices

. H. L. GRUBIN
‘ Scientific Research Associates, Inc., P.O. Box 1058, Glastonbury, CT 06033-6058, U.S.A.

D. K. FERRY, R. AKIS
Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287-5706, U.S.A.

(Received 20 May 1996)

A key simulation issue is the development of a dissipation formalism for the time dependent
density operator equation, that is amenable to numerical methods and incorporates the role
of the environment on state renormalization and dissipation. Using standard super-operator
calculus, projection operators, and separating the system of interest from the reservoir, the
relevant operator equation is derived. In addition, the role of the reservoir on renormalizing
the energy spectrum is discussed.

© 1996 Academic Press Limited
Key words: dissipation, quantum transport, Liouville operator.

1. Introduction

Numerical simulation of quantum structures has been a major element of device physics studies. A key issue
in these simulations is the development of a formulation for dissipation within the framework of the quantum
Liouville equation. Such a formulation is considered below with the discussion based upon Haken [1] for a
quantum system (e.g. electrons), which may be far from equilibrium. The system of interest, denoted by S,
is kept far from equilibrium by coupling it to other systems with which it exchanges energy. The discussion
below is concerned with coupling to a reservoir, denoted by R, whose detailed properties are often of interest.

The quantum Liouville equation for the total system, S plus R is:

) A .
m% =[H, prl = Apr, )

where the ‘carat’ over the operator, designates a super-operator, as reviewed in Ref. [2]. The super-operator
here, also called the Liouville operator, is a commutator-generating super-operator, whose use simplifies
the algebra associated with separating the reservoir and system. We use super-operator algebra to obtain a
quantum Liouville equation for the reduced density operator for the system S, defined as the trace over the
eigenstates of the reservoir, p; = Tr® pr, (with a similar definition for the reduced density operator for the
reservoir, pg = Tr'™ pr).

With Hs, Hg, and Hsg denoting, respectively, the Hamiltonian of S, R, and the interaction, the Liouville
equations for ps = Tr® pr and pg = Tr' pr are, respectively: -

)
ih_al-)ti = [Hs, ps] + Tr'®[Hsg, pr], )
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d
=% = [H, pal +Tr[Hsg, pr] 3)

The presence in eqs (2) and (3) of the trace over pr means that we do not have a prescription for obtaining an
equation for the reduced density operator. We deal with this below. Our approach, which is based upon the
projection operators of Mori [3], allows for a general decomposition of the system and reservoir even when
they are significantly entangled, as is often the case for far-from-equilibrium situations.

2. Projection operators and the time dependent Liouville equation

Starting from equation (1), we consider the projection operator P and its complement Q, such that: P+ Q =
1. The operator P is chosen such that: Por = RTr'® pr = Rps, T'® R = 1, PR = R, where R is chosen to
represent the uncoupled distribution of the reservoir, e.g. R — fz = exp[—BHr)/ Tr'® {exp[—B HR1}. Thus
the effect of the operator P is to take the density (or other) operator, average over all the non-equilibrium
coordinates of the reservoir, and generate a density operator that is a product of the equilibrium reservoir
operator and the reduced density operator of the system [4]. The dimension of the subsequent operator is
the same as that of pr. It is easy to demonstrate that P2 = P, and that P is a proper projection operator.
Then, starting from eqn (1), and after some super-operator algebra, the time dependent Liouville equation
becomes:

9 A 2 i N ! n
in 2% = flgps + Hrsps — = T Has() / dzU(t, T) Frs(2) Rps (%)
0

+% Te® ﬁRs(I)fo dr(PU(t, v) Hrs(t) Rps(z))

t t
+% Tr'® Hgs(t) fo dr(Q f dt'U(t, T)PH(I)V (T, r)ﬁRs(r)Rps(r)). 4
Here,
Hgs = T'® (HgsR), )
: t
V(1) = exp—%f dv'H(t)Q, (6)
U, t) =exp—% / dt'H(t"). @)

In eqn (4), all terms are expressed as functions of the reduced density matrix whose time dependence
implicitly includes that of the reservoir. The equilibrium reservoir coordinate appears to first order in the
second term, and at least to second order in the remaining terms (on the right-hand side of eqn (4)). The
intra-collisional field effect, for example, arises from the presence of the total Hamiltonian in the exponential
of the operator U (¢, 7). Below we introduce approximations to place the above results in perspective. We have
also assumed that at 1 = 0, when the interaction is initiated, the density operator is separable into orthogonal
operators for the system and the reservoir. In this case, the time dependence of eqn (4) is unaffected by the
initial condition.

The last three terms on the right-hand side of eqn (4) represent the effect of scattering by the fluctuations
in the reservoir. These terms all contribute to an equivalent self energy. On the other hand, the second term on
the right-hand side is a non-dissipative correction to the system that arises from merely opening the system.
Traditionally, }his term leads simply to a modification of the eigenvalue spectrum within the system. However,

the nature of H &s can dramatically affect the entire structure of ps. We examine a test case in the next section.
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Fig. 1. Plot of the diagonal elements of the density matrix, i.e. the square of the magnitude of the wave function, for a square quantum
dot subject to different reservoir couplings. A, The coupling is through tunneling barriers. B, The coupling is via conducting wave guides
supporting two modes. Clearly the nature of the coupling creates a different density matrix for the system.

3. Open systems near equilibrium

We consider a square quantum dot that is coupled to the reservoirs through point contacts (these are
observable in figure 1B). if the quantum point contacts are closed down to create tunneling barriers (the weak
coupling limit), then the properties are quite uniform across the dot. In figure 1A, the diagonal terms of the
density matrix in the coordinate representation, ps(x, y; xy) = | (x, y)|?, are presented for the tunneling
barrier case. If we vary an applied magnetic field, the transmission function exhibits a series of sharp tunneling
peaks.

In contrast, if the point contacts are opened, then entering particles form a collimated beam, which excites
a particular set of eigenstates required to reproduce the semi-classical orbits [5]. The excitation is not limited
to a single eigenstate, but excites a specific set of modes [6]. It is clear, by comparing Fig. 1A and 1B, the
actual values of ps are dramatically affected by the specific details of the interaction with the reservoir.

Another important point is that the energy level shifts and coupling that occur by opening the system to the
reservoir are distinctly different from the scattering properties, which lead to level broadening. The former
arise from the second term on the right of eqn (4), while the latter arises from the last three terms on the right
of eqn (4). Scattering from the reservoir can either cause broadening of the levels, or actually work to stabilize
the regular orbits [7]. It might be expected that the latter case would actually lead to narrowing of discrete
energy levels.

4. Scattering in non-equilibrium systems

More generally, what is done with eqn (4) depends upon the problem of interest. For the case where the
Hpg is linear in the momentum [8], the dissipation may be expressed in terms of a quasi-Fermi energy model
{9]. Ahn [10] treated the reservoir as stochastic, performed a time average on eqn (4), and obtained a quantum
kinetic equation for interacting electron and hole pairs. Krech ez al. [11] developed a master equation to study
macroscopic quantum tunneling of charge in ultra-small single electron tunneling double junctions.

We shall consider some of the more general features of this equation. The third term, which was obtained
without the use of perturbation theory, includes the intracollisional field effect. If the off-diagonal elements of
the density operator in the momentum representation are taken as small compared to the diagonal elements,
we obtain the quantum kinetic equation discussed by Ferry [2], as well as that of Kreiger and lafrate [12). This
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third term incorporates energy conservation, but only within the system S. We note that the results of Ref. [12]
were obtained through perturbation theory with the interaction Hamiltonian as the perturbation estimate. The
results here are not totally dependent upon approximations, and suggest a broader applicability of the results
of Ref. [12]. Higher-order terms corresponding to the detailed role of the reservoir are readily accessible.
These will be discussed in more detail elsewhere.
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